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Abstract
Elasticity tensor components, Ci j , the crystallographic dependence of Poisson’s ratio, the phase
stability, and vibrational spectra are computed for nonmagnetic and magnetic CeMg (1:1
Ce:Mg) structures using density functional theory. Results from both the generalized gradient
approximation (GGA), and the GGA + U , based upon an effective on-site Coulomb potential,
Ueff, are investigated. The GGA low energy structure, with wavevector along [110], disagrees
with experiment, while the [100] structure from experiment is predicted as the 0 K structure in
the GGA + U . Accurate estimation of the 20 K Néel temperature can only be achieved with
small Ueff, which suggests that CeMg is not a strongly correlated system. For all CeMg
structures investigated, we find C11 ≈ C44; this is consistent with the near equivalency of
transverse and longitudinal sound speeds. The origin of this behavior is the negative stretching
force constants for the interaction between the second- and third-nearest-neighbor Mg and Ce
ions, respectively. Results are compared with neutron scattering experiments at 30 and 110 K.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Cerium-based heavy fermion compounds constitute a scientif-
ically interesting class of materials that have attracted substan-
tial interest due to their intriguing properties and technologi-
cal significance. For example, pressure-induced superconduc-
tivity has been reported in CeIn3, CePd2Si2, CeCu2Ge2, and
CeRhIn5 [1]. Anomalies in magnetic susceptibility and heat
capacity at low temperatures [2–4] involving the Kondo effect
and the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction
have also been reported [5, 6]. Cerium serves a crucial role in
Mg alloys which are the focus of current worldwide interest
as potential alternatives to heavier Al and steel alloys in auto-
motive structures. Cerium, as part of mish metals (which are
mixtures of rare earth (RE) elements, e.g., 51.7% Ce, 23.1%
La, 18.6%, Nd, and 6.5% Pr, in mass %) [7], is often added
to improve Mg alloy formability and enhance corrosion resis-
tance. Despite the fact that Ce has very limited solubility in

Mg, various Ce-containing precipitates in Mg alloys have been
identified [8–13]. Cerium additions have been shown to affect
Mg alloy texture leading to improved ductility [14]. The mech-
anisms by which Ce additions and Ce–Mg precipitates lead to
reported improvements in Mg alloys are complex and poorly
understood. Moreover, fundamental property information for
Ce–Mg compounds, such as elastic and vibrational properties,
is scarce.

An important component of the Ce–Mg phase diagram
is paramagnetic (PM) CeMg (1:1 Ce:Mg) which has the
cubic CsCl-type structure at room temperature (a ≈
3.9 Å [15], metallic) and shows Kondo-type behavior [3].
Below the TN ∼ 20 K [4, 16] Néel temperature, CeMg
orders antiferromagnetically (AFM) with a strong tetragonal
distortion [17]. Pierre et al [18] measured the phonon
dispersion relations of the PM structure of CeMg at 30 K
and 110 K with neutron scattering experiments and estimated
the elastic constants of CeMg from acoustic phonon branches.
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Their phonon dispersion results show no significant differences
at the temperatures associated with the measurements. Using
the implementation of plane wave density functional theory
(DFT) in the VASP code [19, 20], Wu and Hu [21] computed
the elasticity tensor components, Ci j , of nonmagnetic (NM)
CeMg and found qualitative accord with the Pierre et al
[18] estimates from 110 K measurements. A special
Ce potential (5s25p65d6s2 valence) within the generalized
gradient approximation (PW91) [22] based on the projector-
augmented wave (PAW) method [23] was used. Here, f
electrons are not treated explicitly but are kept frozen in the
core. This special potential is problematic, however, since
it leads to the erroneous conclusion that low temperature
magnetic CeMg structures are nonmagnetic (NM) states even
at higher volumes (greater than the equilibrium structures).

Many Ce-based heavy fermion compounds exhibit
anomalies in the Ci j temperature behavior and in other
thermodynamic properties such as the specific heat, magnetic
susceptibility and resistivity [24]. For the majority of
crystalline materials, C44 is less than C11, for which vt is
less than v�, where vt and v� are transverse and longitudinal
sound speeds, respectively [25]. For some materials, C44 has
been found to be nearly equal to (or even exceed) C11, which
suggests an elastic anomaly since v� is comparable to (or less
than) vt. For example, C11 = 8.1 and C44 = 10.1 GPa for BCC
Ba [26]. This is related to the hybridization of free electron
states with d bands close to the Fermi level [26]. However,
the possibility of an f state system with different magnetic
states (such as CeMg) exhibiting this behavior has not been
extensively investigated. None of the existing studies of CeMg,
including that of Wu and Hu [21], suggests elastic anomalies
which are associated with the relative slopes of acoustic zone
center phonon dispersion branches from which vt and v� can
be computed. Interestingly, the Ci j from experiment [18]
and calculation [21] suggest a negative Poisson’s ratio for
elongation along [110] measured in [11̄0] (i.e. the lateral
direction) [27].

In this paper, we examine the phase stability of nonmag-
netic (NM), ferromagnetic (FM), and antiferromagnetic (AFM)
CeMg structures with first-principles density functional theory
(DFT) within the generalized gradient approximation (GGA).
For comparison with the GGA predictions, ancillary calcula-
tions using the GGA+U method, in which an effective on-site
Coulomb potential for the f states is added to the GGA, were
also conducted (the dynamical mean field approach [28] could
also be applied to CeMg as an alternative to the GGA + U ).
The two methods are found to lead to different conclusions
about the 0 K structure of CeMg. We examine each struc-
ture for C11 ≈ C44. For this purpose, and to facilitate com-
parisons with experiments, components of the elasticity tensor,
Ci j , and vibrational spectra based upon the direct method for
lattice dynamics were computed for each CeMg structure us-
ing VASP [19, 20] as the computational engine. The origin of the
CeMg elastic behavior is revealed through examination of the
relative sizes of the force constants for the interaction between
nearest neighbor ions computed from the phonon calculations.
Finally, we look for negative values of Poisson’s ratio for elon-
gation along [110] measured in [11̄0] following [27].

a
b

c

(a) (b) (c)

Figure 1. Positions and spin alignments of Ce ions in the AFM
CeMg structures with the CsCl-type structure. •: Ce+ (spin up),◦: Ce− (spin down). (a) AFM100, (b) AFM110, (c) AFM111.
Additional structural details are listed in table 1.

The remainder of this paper is organized as follows.
Section 2 details the NM, FM, and AFM CeMg structures
examined in this paper. Our computational approach is
described in section 3. Predicted structural properties, phase
stability and choice of the effective U value (Ueff) for the
GGA + U are considered in section 4, while section 5
describes our Ci j calculations for each CeMg structure
and explores Poisson’s ratio along specific crystallographic
directions. Section 6 details our phonon calculations (mainly
by using the GGA) and addresses the origin of the intriguing
elastic behavior in terms of force constants from our phonon
calculations. Major results of the paper are summarized in
section 7.

2. CeMg structures

Space groups, lattice vectors, and Wyckoff positions for
the five CeMg structures investigated herein are detailed in
table 1. The three CeMg AFM structures are such that the
Ce ions (spin up Ce+ or spin down Ce−) reside in planes
that are perpendicular to the [001] direction (AFM100), the
[110] direction (AFM110), and the [111] direction (AFM111).
Figure 1 shows spin alignments of the Ce ions in representative
cubic cells with the solid circles representing Ce+ (spin up)
and the open circles denoting Ce− (spin down). A P4/mmm
tetragonal space group is associated with the spin orderings
in AFM100 (figure 1(a)) and AFM110 (figure 1(b)), while
AFM111 (figure 1(c)) is cubic with Fm3̄m. The AFM
structures can also be distinguished by the positions of the
second-nearest neighbors (2nn) surrounding the Ce+ (or Ce−)
ions. In AFM100, there are two Ce− ions along the c-axis
direction and four Ce+ ions along the a-axis (and b-axis)
directions surrounding one Ce+ ion. Note that the a- and b-
axes are equivalent for each tetragonal structure. In AFM110,
there are four Ce− ions along the a-axis (and b-axis) directions
and two Ce+ ions along the c-axis direction surrounding one
Ce+ ion. In AFM111, there are six Ce− ions surrounding one
Ce+ ion. Magnetic CeMg structures containing more than four
ions (not considered here) can be generated by mixing the FM,
AFM100, AFM110, and AFM111 structures.

3. Computational approach

All calculations in this study are based on the implementation
of plane wave density functional theory (DFT) in the Vienna
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Table 1. Space groups, lattice vectors, and Wyckoff positions of Ce (including spin up, Ce+, and spin down, Ce−) and Mg for NM, FM, and
AFM CeMg structures. In AFM100, AFM110, and AFM111, the two independent Ce ions (Ce+ and Ce−) are antiferromagnetic along [001],
[110], and [111], respectively (see figure 1). Here, the ideal c/a ratio is set as unity, 1, for the tetragonal structures in order to compare their
distortions relative to the cubic structure.

Wyckoff position

State Space group Lattice vector Ce or (Ce+) Ce− Mg

NM Pm3̄m

⎛
⎝

a 0 0
0 a 0
0 0 a

⎞
⎠ 1a (0, 0, 0) 1b (1/2, 1/2, 1/2)

FM Pm3̄m

⎛
⎝

a 0 0
0 a 0
0 0 a

⎞
⎠ 1a (0, 0, 0) 1b (1/2, 1/2, 1/2)

AFM100 P4/mmm

⎛
⎝

a 0 0
0 a 0
0 0 2c

⎞
⎠ 1a (0,0,0) 1b (0, 0, 1/2) 2h (1/2, 1/2, z)

z = 1/4 a

AFM110 P4/mmm

⎛
⎝

a a 0
−a a 0
0 0 c

⎞
⎠ 1a (0,0,0) 1c (1/2, 1/2, 0) 2e (0, 1/2, 1/2)

AFM111 Fm3̄m

⎛
⎝

0 a a
a 0 a
a a 0

⎞
⎠ 4a (0, 0, 0) 4b (1/2, 1/2, 1/2) 8c (1/4, 1/4, 1/4)

a The ideal value.

ab initio simulation package (VASP) [19, 20]. The electron–
ion interactions are described by the full potential projector-
augmented wave (PAW) method [23], and the exchange–
correlation is treated within the GGA of Perdew–Burke–
Ernzerhof (PBE) [29] in conjunction with the interpolation
formula of Vosko et al [30]. The PAW potential set comprised
a 5s25p64f5d6s2 valence configuration for Ce and 2p63s2 for
Mg. We also accounted for on-site Coulomb repulsion among
localized Ce 4f electrons in ancillary calculations based upon
the implementation of the GGA + U method of Dudarev et al
[31] in VASP. This method requires that an effective Coulomb
interaction, Ueff = U − J , be specified. Here, U is the
strong on-site Coulomb interaction due to the energy increase
from an electron addition to the Ce 4f states, and J is the
screened exchange energy [32]. It is worth mentioning that
the GGA + U method as implemented in VASP introduces
magnetism. Its application to nonmagnetic structures is to
be avoided since it will yield non-physical results (e.g. the
equilibrium cell volume decreases with increasing Ueff). We
note that Ueff can in fact be computed in a self-consistent way
on the basis of the approach of Cococcioni et al [33]. For
example Ueff = 2.5–3.5 eV for LDA + U and Ueff = 1.5–
2.0 eV for GGA + U were applied for CeO2 [34]. However,
we were able to make a suitable choice for Ueff, as has
been done in previous work, without the need for additional
calculations. We based our choice of the Ueff upon two
important experimental results that must be predicted with
reasonable accuracy for magnetic CeMg structures: (1) the
AFM100 ground state of CeMg [17], and (2) the ∼20 K
Néel temperature of CeMg [4, 16]. We note that the VASP

implementation of the Dudarev et al [31] method has been
used in studies of the electronic structure and thermodynamic
properties of CeO2, Ce2O3, and CeO2−x [35, 36]; optical
properties of α- and γ -CeS2 [37]; molecular adsorption
on transition metal oxide surfaces [38]; phase stability of
lithium ion battery materials [39, 40]; electric polarization
in a LaMnO3/BaTiO3 superlattice [41]; and point defects in

uranium dioxide [42]. As mentioned above, the common
approach is to select Ueff on the basis of desired experimental
properties.

Lattice parameters and single-crystal bulk moduli were
computed through a fit to an equation of state [43]. For this
purpose, two successive constant volume shape optimizations
on each primitive cell were conducted. Total energies on
the VASP-optimized structures were calculated by integration
over a Monkhorst–Pack [44] mesh of k-points in the Brillouin
zone with the linear tetrahedron method including Blöchl
corrections [45]. k-point meshes that provided convergence
of electronic energies to at least 0.1 meV f.u. (f.u. = formula
unit) were utilized along with a 500 eV cutoff energy for
all structures. All force components were relaxed to at least
10−4 eV Å

−1
.

The Ci j were computed with the optimized primitive
cell geometries using the stress-based least-squares fitting
method of LePage and Saxe [46]. This method uses the
stresses computed in VASP as inputs to a least-squares fit
of the unknowns in the linear stress–strain equations for a
sequence of symmetry-unique strains. Here the unknowns
are the three and six independent elastic constants for cubic
and tetragonal symmetries, respectively. The moduli are
computed from the first derivatives of the VASP-computed
stresses with respect to strain, rather than from the second
derivatives of the total energy with respect to strain (e.g.,
as in [47]). Perhaps the most advantageous aspect of this
method is its full exploitation of symmetry which allows for
maximum computational efficiency with the VASP. Tests were
conducted with selected strains to determine the total number
of strains necessary to minimize the least-squares errors for
each Ci j . It was determined that application of four successive
strain values, namely, 0.4%, 0.5%, 0.6%, and 0.7%, was
adequate for obtaining �1% statistical error in each Ci j for
all CeMg structures. The Pm3̄m symmetry required three
distortions per strain, leading to two structures with P4/mmm
symmetry and one structure with Cmmm symmetry. A total of
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thirteen VASP geometry optimizations (three for each of the four
selected strains, and the undistorted structure) were required
to compute Ci j . The same applied for the Fm3̄m space
group except that two distorted structures with the P4/mmm
symmetry and one with Immm symmetry were required.
The P4/mmm structures required six distortions per strain,
leading to two Pmmm structures, two P4/mmm structures,
one P2/m structure, and one Cmmm structure. Twenty-
five VASP geometry optimizations (six for each of the four
selected strains and the undistorted structure) were required.
The quality of the least-squares fit, as gauged by the computed
least-squares residual, was �1% for all Ci j calculations. The
small residuals indicate that anharmonic effects due to the
applied strains in the computed Ci j were negligible. Tests
with additional strains showed no significant deviation from
the results reported here. All Ci j computations employed
the same DFT convergence criteria as the calculations on
the undistorted structures. Previous applications of the least-
squares method for calculation of the Ci j wherein VASP was
used as the computational engine may be found in [48–53].

Vibrational spectra were computed by means of the direct
approach [54] (or supercell method [55]) to lattice dynamics in
the PHONON code [56] with VASP again the computational engine.
The direct method involves construction of N+1 supercells: an
unperturbed supercell and N perturbed supercells, where N is
the number of crystallographically independent displacements
of the constituent ions. In each perturbed supercell, a single
atom is displaced in a Cartesian direction in such a way
that the N supercells explore all of the degrees of freedom
of each symmetry-unique atomic site. In this way, the
entire Brillouin zone is explored with suitably constructed
supercells. Displacements of ±0.02 Å were applied to the ions
(displacements as large as ±0.03 Å and as small as ±0.01 Å
were found to produce no significant differences from results
calculated for the ±0.02 Å displacements). The supercell size
was chosen such that interactions between equivalent ions in
periodic images were negligible, as were the computed force
constants at the boundaries of each supercell. For all CeMg
structures, 2 × 2 × 2 supercells were used. This involved
16 ions/supercell for the NM, FM, and AFM111 structures
and 32 ions/supercell for the AFM100 and AFM110 structures.
Ancillary phonon calculations with larger supercells revealed
no significant differences from results with the 2 × 2 ×
2 supercells. Reciprocal space integration was performed
by means of the Methfessel–Paxton technique [57] with a
smearing width of 0.05 eV (the phonon results showed no
sensitivity to smaller deviations in smearing width above and
below 0.05 eV). Additional details on the phonon methodology
can be found in [50, 58].

4. Structural properties and phase stability

Figure 2(a) shows the GGA-predicted spin magnetic moments
of Ce (or the site-projected moments for the AFM structures)
with atomic volume for the FM and AFM structures. The
spin magnetic moments increase with increasing volume for
all magnetic structures, as expected. For the range of atomic
volumes shown, the spin moments of the AFM100 and
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Figure 2. (a) GGA-predicted Ce site-projected spin magnetic
moments (μB) (only the + value is shown for the AFM structures)
and (b) total energy per atom as a function of atomic volume for
CeMg structures detailed in table 1.

AFM110 are nearly identical. Each is consistently greater
than those computed for AFM111. Computed spin moments
for the CeMg FM structure fall between those for the AFM
structures with volumes ranging from 28.2 to 31 Å

3
, achieving

peak values at the largest atomic volumes. Extensive tests at
volumes below 24 Å

3
revealed that all magnetic states converge

to the NM state.
Figure 2(b) shows the volume-dependent total energies

for each CeMg structure from the GGA calculations. The
VASP-computed energy–volume points were fit to the following
equation of state (EOS) [43]:

E(V ) = a′
0 + b′

0V −1/3 + c′
0V −2/3 + d ′

0V −1, (1)

where V is the volume and a′
0, b′

0, c′
0 and d ′

0 are fitting
parameters. The corresponding equilibrium lattice constants,
a, c, cell volumes, V , single-crystal bulk moduli, B ,
bulk modulus pressure derivatives, B ′, and spin magnetic
moments, MM, estimated on the basis of the EOS fits,
are listed in table 2. The equilibrium energy/ion relative
to AFM110, which is our predicted low energy structure
from the GGA (see figure 2(b)), is tabulated as �E . Of
the three AFM structures, we find the AFM110 structure
to have the lowest GGA-predicted equilibrium energy, with
the AFM100 structure only 0.95 meV/ion (i.e., 1.9 meV
per magnetic Ce ion) higher in energy (see figure 2(b)
and details in table 2). The phase stability of CeMg
from the GGA disagrees with the ground state of AFM100
from experiment [17]. We therefore conducted ancillary
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Table 2. CeMg properties calculated from the GGA and the GGA + U (Ueff = 0.4 eV), together with measured properties of CeMg (see the
structural details in table 1), including the lattice parameters a and c (ideal c/a = 1; see table 1), volume per ion (V ), bulk modulus (B), bulk
modulus pressure derivative (B ′), and the relative energy per ion (�E) with respect to AFM110 estimated by equation of state (EOS) fitting of
equation (1). The spin magnetic moment per Ce ion (MM) is also listed.

Structures a, c (Å) V (Å
3
) B (GPa) B ′ �E (meV) MM (μB)

NM (GGA) 3.819 27.85 37.8 3.64 9.48

FM (GGA) 3.831 28.12 32.1 3.19 11.01 0.52
FM (GGA + U ) 3.830 28.09 33.6 3.41 17.83 0.47

AFM100 (GGA)a 3.784, 3.955 28.31 33.8 3.44 0.95 0.78b

AFM100 (GGA + U)a 3.776, 3.987 28.42 33.9 3.46 −0.30 0.85b

AFM110 (GGA)c 3.877, 3.763 28.28 34.0 3.59 0.00 0.78b

AFM110 (GGA + U)c 3.753, 3.888 28.37 34.1 3.51 0.00 0.83b

AFM111 (GGA) 3.831 28.12 33.6 3.42 6.79 0.55b

AFM111 (GGA + U ) 3.837 28.25 34.0 3.39 7.80 0.68b

Expt 3.908d 29.84e 37.8f

3.898d 29.61e

3.901d 29.68e

a Relaxed c/a ratios for AFM100:1.045 (GGA) and 1.056 (GGA + U ).
b Site-projected value.
c Relaxed c/a ratios for AFM110:0.971 (GGA) and 0.965 (GGA + U ).
d Tabulated experimental data for the cubic structure [15].
e Calculated values obtained from the experimental data in [15].
f Estimated value from the measured phonon dispersion curves at 110 K [18].

calculations with the GGA + U to investigate the effect of the
correlated Ce 4f states on the phase stability. Figure 3 shows
the equilibrium relative energy of AFM100 with respect to
AFM110, �E[E(AFM100) − E(AFM110)], as a function of
the effective Coulomb interaction Ueff. When Ueff > 0.34 eV,
AFM100 becomes the ground state as shown in figure 3.
This Ueff value was subsequently adjusted by accounting
for the measured ∼20 K Néel temperature [4, 16]. Using
the energy versus volume curves from the GGA + U with
Ueff > 0.34 eV, we found that Ueff = 0.4 eV results in
an estimated CeMg Néel temperature that is very close to
20 K. Our estimated Néel temperature is based upon: (i) the
assumption that the PM structure is a mixed spin-flipping
configuration (SFC) involving FM and AFM structures (except
for AFM100), and (ii) the distributions of AFM100 and SFC
at elevated temperatures can be predicted with the partition
function method recently detailed in our density functional
study of the Ce isostructural phase transition [59]. In fact, on
the basis of the partition function method [59], the minimum
energy difference between the ground state and the low energy
magnetic configuration is found to be roughly proportional to
the Néel (or Curie) temperature. With Ueff = 0.4 eV for
CeMg, the energy of the ground state AFM100 structure is
0.3 meV/ion lower than that of AFM110 (see figure 3 and
table 2), which therefore gives us a reasonable prediction of
the Néel temperature for CeMg. We noticed that comparably
small values of Ueff were also used in other studies. For
example, Cococcioni [60] and Yang et al [61] both used small
Ueff (<1 eV) in their studies of magnetic transition metals.
The small value of Ueff used in the present study suggests that
CeMg is not strongly correlated and its role may be thought of
as nothing more than a small (semi-empirical) correction to the
GGA that is required to obtain reasonable agreement with the

ΔE
 (

m
eV

/a
to

m
)

0.50.40.30.20.10.0

Ueff (eV)

ΔE = E (AFM100) - E (AFM110)-1.0

-0.5

0.0

0.5

1.0

Figure 3. Relative energy �E of AFM100 with respective to
AFM110 as a function of the effective Coulomb interaction Ueff.

experimental Néel temperature and to predict the 0 K magnetic
structure that is consistent with experiment.

The EOS fit properties based on the energy versus volume
curves from the GGA + U (Ueff = 0.4 eV) are also listed in
table 2. In order to probe the influence of Ueff and compare
with other Ce-containing materials studied with the DFT + U
method (see [36] and the references within), large Ueff values
(e.g. 1.6 eV previously used to predict thermodynamics of
the Ce isostructural phase transition [59]) will also be used
to investigate the elastic properties of CeMg, although these
larger values do not lead to prediction of a reasonable Néel
temperature for CeMg.

Regarding the equilibrium lattice parameters (or volumes)
of CeMg, table 2 shows that values from both the GGA and
the GGA + U (Ueff = 0.4 eV) are smaller (∼2%) than the
room temperature measurements [15]. Similar observations
have been made for other Ce compounds where the VASP Ce
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Table 3. Calculation results obtained from least-squares fittings of strain versus stress data points with the GGA and GGA + U (Ueff = 0.4
and 1.6 eV) together with measured elastic properties (in GPa) of each CeMg structure (see table 1). A numerical label is listed in the first
column of each row to facilitate discussion of the results tabulated herein. Included are elasticity tensor components, Cij , the bulk modulus,
B, and shear modulus, G (Hill polycrystalline moduli), the polycrystalline Poisson’s ratio νpoly, and the minimum Poisson’s ratio νmin. All
calculations were conducted at the predicted equilibrium volumes (see table 2 and figure 4). To compare with the least-squares method, the
Cij of the NM structure were computed with different methods, namely, phonon and the force constant (FC) ones.

Structure C11 C33 C12 C13 C44 C66 BHill GHill νploy νmin

(1) NM 47.6 32.0 49.0 37.2 24.2 0.23 −0.46
(2) NM (phonon) 36.8 31.0 51.8 32.9 19.5 0.25 −0.74
(3) NM (FC) 36.9 31.2 52.2 33.1 19.5 0.25 −0.74
(4) FM 37.4 23.9 46.7 28.4 22.3 0.19 −0.50
(5) AFM100 44.3 38.4 28.9 28.4 45.4 45.7 33.0 21.9 0.23 −0.49
(6) AFM100 (Ueff = 0.4 eV) 48.1 43.2 28.9 30.4 45.0 44.8 35.4 23.1 0.24 −0.45
(7) AFM100 (Ueff = 1.6 eV) 48.2 48.9 25.6 27.2 38.8 37.9 33.9 23.3 0.22 −0.27
(8) AFM110a 80.8 42.2 −10.7 30.2 46.3 7.0 33.7 21.6 0.24 −0.55
(9) AFM110b 42.1 42.2 28.1 30.2 46.3 45.8 33.7 21.6 0.24 −0.55
(10) AFM111 43.5 28.8 47.7 33.7 23.2 0.22 −0.47
(11) PM expt.c 48.5 32.5 35 37.8 19.5 0.28 −0.30

a First-principles values predicted on the basis of the lattice vectors given in table 1.
b Transformed values C ′

i j from a 45◦ rotation of Cij about the z-axis.
c Estimated values from the measured phonon dispersion curves at 110 K on the paramagnetic CsCl-type
CeMg [18].

potential with f states in the valence has been applied [37, 62].
Corrections for thermal expansion and the volume dependence
of zero-point energy will in fact lead to lattice parameters that
are in closer accord with experiment [50]. The c/a ratios
predicted from the GGA (GGA+U ) for AFM110 and AFM100
are, respectively, 0.971 (0.965) and 1.045 (1.056), while that
from experiment is 1.013 [17]. This suggests the possibility
that the measurements may have been conducted on a mixture
of the AFM100 and AFM110 states due to the small energy
difference between them (0.95 and −0.3 meV/ion from the
GGA and the GGA + U , respectively; see table 2). We define
an ideal c/a ratio as unity for the tetragonal structures AFM100
and AFM110 in order to compare their distortions (i.e. changes
in the c/a ratio) to the cubic structure (see table 1). The nearest
neighbor AFM ions (Ce+ and Ce−) are aligned along the c-
axis and the a-axis in AFM100 and AFM110, respectively
(the corresponding lattice vectors are listed in table 2). By
considering the magnetic configurations and the predicted c/a
ratios (>1 for AFM100 and <1 for AFM110 on the basis
of both the GGA and the GGA + U ), we surmise that the
repulsive interaction between the AFM Ce ions (Ce+ and
Ce−) is stronger than that between the FM ions (Ce+ and
Ce+, or Ce− and Ce−).

The single-crystal bulk moduli, B , for the magnetic states
are lower than that for the NM state since magnetic interactions
expand the lattice (see the equilibrium volumes given in
table 2). In addition, the bulk moduli from the GGA + U
are slightly larger than those due to the GGA, indicating
slightly stronger atomic interactions. The bulk modulus
pressure derivative, B ′, which is related to the Grüneisen
constant, is also related to the thermal expansion coefficient.
The larger B ′, the larger the value of the thermal expansion
coefficient [43, 63]. Table 2 gives the EOS predicted B ′
with values around 3.19–3.64 from both the GGA and the
GGA + U . Small differences in B ′ suggest similar thermal
expansion behavior.

5. CeMg elastic properties

Table 3 lists the GGA-predicted Ci j and related polycrys-
talline elastic moduli for each CeMg structure computed
with the least-squares method [46] and from other theoreti-
cal/experimental sources. To facilitate the ensuing discussion,
each entry in table 3 is labeled with a number in parenthesis
listed in the first column. For AFM110, the four-atom primi-
tive cell given in table 1 was used in the present first-principles
calculations. Here the lattice vectors a and b are along [110]
and [1̄10] in the other CeMg structures (also listed in table 1),
respectively, and are rotated by 45◦ about the c-axis. To quan-
titatively compare the Ci j computed for AFM110 with those of
the other CeMg structures, we must first rotate each Ci j by 45◦
around the c-axis. The rotated elastic constants, C ′

i j , in terms
of the VASP-computed Ci j for AFM110 are [64, 65]

C ′
11 = (C11 + C12)/2 + C66, (2)

C ′
12 = (C11 + C12)/2 − C66, (3)

C ′
66 = (C11 − C12)/2, (4)

C ′
13 = C13, (5)

C ′
33 = C33, (6)

C ′
44 = C44. (7)

Anisotropic cubic crystals have two unique shear moduli,
namely, C44 and (C11 −C12)/2. The same is true for tetragonal
crystals except for C66 which is a third shear modulus [25, 66].
We note that C11 < C44 or C11 ≈ C44 (which we refer to as
an elastic anomaly) is rare, occurring in the elemental (cubic)
solids only for BCC Ba [26, 67]. In the specific case of Ba, this
behavior signals a change from free electron-like character to
a transition metal [26, 68].

Unless otherwise mentioned, the Ci j listed in table 3 were
computed with the 5s25p64f5d6s2 Ce GGA-PBE potential [29]
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Figure 4. GGA + U -predicted equilibrium volume and elastic
constants for AFM100 CeMg as a function of the effective Coulomb
interaction Ueff.

and the equilibrium lattice parameters were predicted with this
potential (see table 2). The GGA-predicted Ci j in entry (1)
of table 3 corresponds to the NM structure. Here C44 >

C11 by 1.4 GPa. The C11 and C12 are close to the 110 K
experimental values in entry (11) and a ≈ 3.906 Å (a =
3.902 Å at 30 K and a = 3.914 Å at room temperature)
reported in [18]. The notable exception is the shear elastic
constant, C44, for which that in entry (1) for 0 K exceeds
the 110 K experimental value in entry (11) by 14 GPa. It
is worth mentioning that the experimental Ci j were estimated
from measured phonon spectra [18], a process that can lead to
results that are inherently inaccurate, as discussed below. In
addition, C44 > C11 is also predicted in the present work using
other exchange–correlation potentials, e.g., GGA-PW91 [22]
and LDA [69, 70], when the same Ce valence (5s25p64f5d6s2)
is used. Alternative means of computing the Ci j also lead to
the conclusion that C44 > C11 on the basis of DFT theory
(i.e. from both the GGA and the LDA). This is shown in
entries (2) and (3) where the Ci j of NM CeMg were computed
using the slopes of our GGA-computed zone center phonon
dispersion branches and with the force constants from our
phonon calculations, respectively.

Figure 4 shows the Ci j and equilibrium volumes of
AFM100 CeMg predicted from the GGA + U as a function of
Ueff. With increasing Ueff, the equilibrium volume of AFM100
increases; C11, C33 increase; C12, C13 remain essentially
constant; and C44, C66 decrease. When Ueff >∼ 0.5 eV,
C11 (C33) > C44 (C66) (see also table 3); this is considered as
the normal elastic behavior. But the large values of Ueff do not
lead to a reasonable prediction of the Néel temperature ∼20 K.

Entries (4)–(10) in table 3 list the Ci j for the magnetic
CeMg structures computed with the GGA, and as an example,
the Ci j for AFM100 from the GGA + U (Ueff = 0.4 eV
and 1.6 eV) are also listed (entries (6) and (7)). Note that
C44 > C11 from the GGA in entries (4), (5), (9), and (10),
with the FM CeMg structure showing the greatest disparity
between these two moduli. The C11 (and C33) computed with

the GGA + U increase relative to the GGA results in entry (5)
for AFM100, and C11 (C33) ≈ C44 (C66). The negative C12

for the AFM110 structure (entry (8)), which is based upon the
lattice vectors given in table 1, suggests a negative Poisson’s
ratio. The C ′

i j in entry (9) resulted from rotation of the Ci j

in entry (8) through 45◦ following equations (2)–(7). In this
system, C ′

12 > 0. In fact, equation (3) and the Ci j from
any entry (except for entry (8)) listed in table 3 will result in
C ′

12 < 0 in the rotated system. It is interesting to note that C12

and C13 are nearly equivalent for the AFM structures in entries
(5), (6), (7) and (9). The same observation applies for C44 and
C66. This is due to the small difference between the tetragonal
and cubic structures (c/a ∼ 1; see table 2).

In summary, first-principles calculations show that the
GGA-predicted C44 (and C66) are slightly larger than C11

(and C33) for all CeMg structures investigated with the Ce
5s25p64f5d6s2 potential. From the GGA + U , we find
C11 (C33) ≈ C44 (C66) for Ueff = 0.4 eV, and C11 (C33) >

C44 (C66) for large Ueff values (e.g. >1 eV). The latter case
agrees with results estimated from phonon dispersion curves at
110 K [18] where C11 > C44 by 14 GPa for the PM CeMg
structure.

Also shown in table 3 are the Hill [71] polycrystalline
bulk, B , and shear, G, moduli based upon our computed
Ci j , from both the GGA and the GGA + U . The Hill
moduli are a compromise between the Reuss and Voigt models
which assume uniform strain and stress, respectively, in a
polycrystalline material. Experiments suggest that B and G
lie in between these two bounds, and Hill’s proposal was
an average of the Reuss and Voigt criteria [71]. The Hill
moduli obtained from the Ci j are in close accord with the
single-crystal values from the EOS fits (see table 2). The
notable exception is for FM (entry (4) in table 3) where
the GGA-predicted polycrystalline bulk moduli are 32.1 GPa
and 28.4 GPa, respectively. The smaller bulk modulus from
the EOS fit for the FM structure resulted from the fit being
performed primarily on the higher volume structures (see
figure 2). The computed polycrystalline bulk moduli for the
cubic structures are reasonably close to that from the 110 K
experiment on the PM CeMg structure [18]. From table 3,
the predicted ratios, B/G, are all less than 1.75. Following
the Pugh criterion which has been applied to infer ductility of
numerous materials [62, 72–74], all CeMg structures have low
ductility due to correspondingly low B/G ratios. According to
this criterion, a ‘critical’ value of ∼1.75 separates ductile and
brittle materials.

Poisson’s ratio describes volume conservation under a
uniaxial stress, or the extent to which elongation in one
direction causes expansion in the transverse plane [27, 75].
Table 3 lists the polycrystalline Poisson’s ratios of all CeMg
structures from [76],

νpoly = (3BHill − 2GHill)/(6BHill + 2GHill). (8)

For all CeMg structures considered in table 3, νpoly > 0.
However, Poisson’s ratios for a single crystal may exhibit
negative values along specific crystallographic directions even
though νpoly > 0. Baughman et al [27] noted that 69% of
the elemental cubic metals exhibit a negative Poisson’s ratio
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when elongated along [110]. Although thought to be rare
in Nature (but not prohibited by thermodynamics), materials
with negative Poisson’s ratio have been the subjects of several
important studies over the past two decades [27, 77, 78]. For
a single crystal, a direction-dependent Poisson’s ratio can be
expressed as [79, 80]

ν = −S′
12/S′

11. (9)

Here, S′
i j is the elastic compliance in Voigt notation. The

direction of longitudinal extension associated with S′
11 is

orthogonal to that of the lateral contraction associated with
S′

12. Baughman et al [27] found that the minimum Poisson’s
ratio for a cubic symmetry results from a [110] extension
measured along [11̄0] or [001]. For CeMg, we found
νmin = ν([110], [11̄0]) for the cubic symmetry, and νmin ≈
ν([110], [11̄0]) for the tetragonal symmetry since c/a ≈ 1
for AFM100 and AFM110 (see table 2). Therefore, νmin =
ν([110], [11̄0]) was adopted for both cubic and tetragonal
symmetries in the present work. For cubic symmetry,
Baughman et al [27] gave the following expression for νmin =
ν([110], [11̄0]) (based on equation (9)):

νmin = −[2C11C44 − (C11 − C12)(C11 + 2C12)]/[2C11C44

+ (C11 − C12)(C11 + 2C12)]. (10)

Note that a version of equation (10) for the tetragonal
symmetry can also be derived through equation (9). For
all cubic and tetragonal CeMg structures detailed in table 3,
νmin < 0. Another Ce compound with a reported negative
Poisson’s ratio is Ce0.74Th0.26 [81]. Interestingly, Baughman
et al [27] identified the PM 110 K CeMg structure (see entry
(11) in table 3) from experiment [18] as having νmin < 0,
in addition to CeAg and elemental Ce. A negative Poisson’s
ratio, which is linked to auxetic behavior [27], is thought to
be uncommon for salts having either NaCl or CsCl structures.
It has been suggested that some materials exhibiting this
behavior may find application as amplifiers for piezoelectric
sensors [27, 76, 82].

6. Elastic properties from phonon calculations

Vibrational spectra and force constants for the interaction
between ions are used to compute the elastic properties of the
CeMg structures considered in section 5. The upper panel
in figure 5 shows our calculated phonon dispersion relations
for NM CeMg at its equilibrium volume (table 2) using the
Ce (5s25p64f5d6s2) PBE potential and the GGA. Experimental
data from 30 and 110 K [18] are shown in figure 5 as filled
circles, which are associated with transverse modes, T, and
open squares, which are associated with longitudinal modes, L.
Reasonable agreement between our phonon results and neutron
scattering measurements is suggested. However, along the �–
X direction (lower panel in figure 5), both the measurements
and phonon calculations indicate that the frequencies of the
twofold-degenerate acoustic transverse branches are very close
to those of the longitudinal branch. The computed L branch
from the GGA falls below that of the corresponding T branches
as indicated by the arrows in the figure. The measurements
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Figure 5. Phonon dispersion curves calculated using the GGA for
NM CeMg together with the inelastic neutron scattering
measurements (symbols) at 30 and 110 K (phonon results from
experiment show no significant differences at these two
temperatures) [18]. In contrast to the measurement, the present work
indicates that the frequency of the longitudinal (L) acoustic branch
along the �–X direction is lower than those of the transverse (T)
acoustic branches.

suggest that the L branch falls just above the T branch (by
no more than a few tenths of a terahertz) halfway along �–X,
but otherwise the associated frequencies are nearly identical.
Alternatively, the L branch from experiment falls above the T
branches along �–M which is the expected behavior.

The Ci j also can be estimated using the long wave ap-
proach with phonon dispersion data. For cubic materials [83],

C11 = ρv2
1, (11)

C44 = ρv2
2, (12)

C11 − C12 = 2ρv2
3 . (13)

Here, ρ is the density, v1 the wave velocity along the
longitudinal 〈100〉 direction (i.e., the �–X direction), v2 the
wave velocity along the transverse 〈100〉 direction (�–X),
and v3 is the wave velocity along the slow transverse 〈110〉
direction (�–M). Velocities are defined by v = dω/dq where
ω is the frequency and q is the wavevector. These are obtained
by a linear fitting in the lower frequency region (i.e. the
long wave region) of the phonon dispersion branches. As
shown in entry (2) of table 3, the GGA-predicted Ci j of NM
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Figure 6. Phonon dispersion curves calculated using the GGA and
GGA + U (Ueff = 0.4 eV) for AFM100 CeMg (see table 1 for
structural details). The symbol L denotes longitudinal acoustic
branches with frequencies that are lower than the corresponding
transverse acoustic branches.

CeMg that result from fitting the phonon dispersion curves also
show the anomalous C44 > C11 relationship since acoustic T
branches have slopes that exceed that of the L branch (and
hence transverse vibrations propagate at speeds that exceed
longitudinal vibrations). Note that the (C44 − C11) predicted
from the least-squares method is 1.4 GPa (GGA; see entry (1)
in table 3), while the (C44 − C11) from the phonon dispersion
curves is 15 GPa (GGA; see entry (2) in table 3). We
believe that the Ci j estimated from the phonon spectra are less
accurate than those obtained by the other methods we have
considered [84]. Our reasons are based upon the following
arguments: (i) the long range interactions being ignored in the
phonon calculations; (ii) the calculated forces acting on ions
used to predict phonon properties being less accurate than the
calculated stresses of the distorted unit cells used to compute
the Ci j with the least-squares method. In fact, the Ci j estimated
from measured phonon curves are also less accurate, since
a small difference in wave velocity v will result in a large
difference in Ci j since Ci j ∝ v2 (see equations (11)–(13) for
the cubic case). On the basis of: (i) the least-squares method
predictions (table 3); (ii) the measured phonon curves for PM
CeMg (figure 5); (iii) greater inaccuracies in the Ci j from both
measured and calculated phonon curves, we therefore assume
that C11 ≈ C44 (C11 may be a few GPa larger than C44) holds
for each CeMg structure studied herein, especially for NM
CeMg.

Figure 6 shows our phonon dispersion curves for the
AFM100 structure at its equilibrium volume (see table 2)
calculated from the GGA and the GGA + U . As is the
case for the NM CeMg structure, phonon anomalies are also
displayed in figure 6. The acoustic L branches have slopes
that are less than those of the acoustic T branches in the �–X
and �–Z directions, corresponding to C44 (C66) > C11 (C33)

as given in table 3. This behavior is more pronounced in
results from the GGA. The computed phonon dispersion curves
of the remaining magnetic structures (FM and AFM111, not
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Figure 7. GGA-predicted stretching (‘s’, filled symbols) and bending
(‘b’, open symbols) force constants of CeMg (see table 1 for
structural details) from the first-nearest-neighbor (1nn) region up to
the fifth-nearest-neighbor (5nn) region.

shown) lead to the same conclusions about elastic and phonon
anomalies in CeMg. Note that the more accurate least-squares
method with the GGA + U predicts C44 (C66) ≈ C11 (C33) as
shown in table 3.

It is useful to analyze the force constants (FCs) obtained
from our phonon calculations as a means of probing the reasons
behind the result C44 ≈ C11 (or even C44 > C11 from the
GGA) for CeMg. The FCs quantify the extent of interaction
or bonding between the ions. A large positive force constant
suggests bonding, while a negative force constant suggests that
the two ions in question would ‘prefer’ to move apart (but the
intervening nearest neighbor ions hold them together). A zero
force constant indicates that the two ions do not interact. The
FCs computed from the GGA are displayed in figure 7 as a
function of bond length for the five CeMg structures detailed
in table 1. The stretching and bending FCs (denoted as ‘s’ and
‘b’ in the figure 7 key) were calculated from the directionally
dependent 3 × 3 FC matrix. Relationships between the FCs
for the CeMg CsCl-type structure are given in table 4. Note
that we omit the lengthy algebraic relationships for the 4nn
and 5nn stretching and bending FCs. We assume that the c/a
ratio of the AFM tetragonal structures is unity to facilitate
the discussion. Figure 7 shows that the stretching FCs in the
1nn region (interactions between Mg and Ce) predominate.
However, the bending FCs in the 1nn region are close to
zero, suggesting that the components α1 and β1 in the FC
matrix (see table 4) are nearly equivalent. Figure 7 also shows
that negative stretching FCs occur for all CeMg structures
in the 2nn (Mg–Mg interaction) and the 3nn regions (Ce–Ce
interaction), indicating the tendency of these ions to move apart
in stretching [85]. For the 4nn region (Ce–Mg bonding) shown
in figure 7, the FCs are close to zero. For the 5nn region
small but positive FCs correspond to Ce–Ce interactions (those
closest to zero correspond to the Mg–Mg case). The stretching
and bending FCs in the 2nn and the 3nn regions in the GGA
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Table 4. Force constant (FC) matrices and expressions for stretching (s) and bending (b) FCs for the first-, the second-, and the third-nearest
neighbors (nn) of the CsCl-type structure.

Fractional coordinates

nn Site A Site B FC matrix Stretching and bending FC

1nn (0, 0, 0) (1/2, 1/2, 1/2)

⎛
⎝

α1 β1 β1

β1 α1 β1
β1 β1 α1

⎞
⎠ FC1(s) = α1 + 2β1

FC1(b) = α1 − β1

2nn (0, 0, 0) (0, 0, 1)

⎛
⎝

β2 0 0
0 β2 0
0 0 α2

⎞
⎠ FC2(s) = α2

FC2(b) = β2

3nn (0, 0, 0) (0, 1, 1)

⎛
⎝

α3 0 0
0 β3 γ3

0 γ3 β3

⎞
⎠ FC3(s) = β3 + γ3

FC3(b) = (α3 +β3 −γ3)/2
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Figure 8. GGA-predicted stretching (‘s’, filled symbols) and bending
(‘b’, open symbols) force constants of NM, AFM100 and AFM110
CeMg (see table 1 for structural details) in the second-nearest-
neighbor (2nn) and the third-nearest-neighbor (3nn) regions.

are shown in greater detail in figure 8 for NM, AFM100, and
AFM110. Note that the FCs obtained from the GGA + U
(not shown) lead to similar conclusions, as indicated by the
similarities of Ci j predicted from the GGA and the GGA + U
(see table 3).

The Ci j can also be estimated from the FCs. For instance,
the following relationships apply for the NM CeMg CsCl-type
structure up to the 3nn [86]:

C11 =
∑

n=A,B

[αA−B
1 + αn−n

2 + 4βn−n
3 ]/a0, (14)

C44 =
∑

n=A,B

[αA−B
1 + βn−n

2 + (2αn−n
3 + 2βn−n

3 )]/a0, (15)

C12 =
∑

n=A,B

[(2βA−B
1 − αA−B

1 ) − βn−n
2

+ (4γ3 − 2αn−n
3 − 2βn−n

3 )]/a0, (16)

F
or

ce
 c

on
st

an
t (

eV
/Å

2 )

 Ce-Ce
 Mg-Mg

2nn
C

11

2nn
C

44

3nn
C

11

3nn
C

44

FC (s) FC (b) ~ 2FC (s)

0.3

0.2

0.1

0.0

-0.1

-0.2

Figure 9. Contributions of force constants (FCs) from the second-
and the third-nearest neighbors (2nn and 3nn) of NM CeMg (see
table 4 and equations (14) and (15)) predicted from the GGA. The
negative stretching FC for the 2nn Mg–Mg and the 3nn Ce–Ce
interactions are responsible for C11 < C44.

where a0 is the equilibrium lattice parameter, A and B represent
distinct ionic sites, the superscript ‘n–n’ pertains to ‘A–A’
or ‘B–B’, and remaining symbols are detailed in table 4.
Equations (14)–(16) show that the 1nn FCs have the same
contribution to C11 and C44. The difference between C11 and
C44 is due to the 2nn and the 3nn interactions as indicated by
equations (14) and (15). For example, the FC components
in the 2nn and the 3nn regions (α2, β2, 2α3, and 2β3) which
lead to the difference between C11 and C44, are shown in
figure 9 for NM CeMg from the GGA. Clearly, the negative
FC contributions have more of an impact on C11 than on C44.
As shown in figure 9, the negative contribution of the FC in
the 2nn region (α2 or stretching FC; see equations (14)–(16)
and table 4) is due to the interaction between Mg ions. The
negative FC in the 3nn region (2 β3 or stretching FC due to
γ3 in table 4 being close to zero) is caused by the Ce–Ce ion
interaction as shown in figure 9. The Ci j calculated from the
FCs (up to the 5nn) are listed in table 3 for NM CeMg (entry
(3) from the GGA). These are close to those from the relations
between the sound speeds in equations (11)–(13) (entry (2)).
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In fact, these conclusions for NM CeMg from figure 9 and
equations (11)–(13) also hold for the other CeMg structures, as
indicated by the similarities between the associated stretching
and bending FCs in figures 7 and 8. Therefore, the origin of the
anomalous C44 ≈ C11 (or C44 > C11 in the GGA) for CeMg
is primarily the negative stretching FCs for the 2nn Mg–Mg
ion interaction and especially the 3nn Ce–Ce ion interaction.
Furthermore, figure 9 shows that (i) the positive Ce–Ce FCs in
the 2nn region (i.e., for the nearest Ce–Ce ions), and (ii) the
FCs for the interaction between the FM Ce ions (Ce+ versus
Ce+ or Ce− versus Ce−) are less than those for the interaction
between the AFM Ce ions (Ce+ versus Ce−). This indicates
that interactions between the AFM Ce atoms are larger than
those that are not antiferromagnetic, and c/a > 1 will result for
AFM100 and c/a < 1 for AFM110, as predicted (see table 2).

7. Conclusions

Phase stability due to magnetism together with elastic and
phonon properties of the CsCl-type heavy fermion compound
CeMg (1:1 Ce:Mg) were investigated with the implementation
of plane wave density functional theory in the VASP code.
In contrast to the case for a previous first-principles study
of CeMg where a core state model of Ce f electrons was
used, all calculations in the present study employed a Ce
PAW potential with Ce f electrons in the valence. Results
from the GGA and the GGA + U , which accounts for strong
correlation in localized Ce 4f electrons with an effective
Coulomb interaction, Ueff, were compared. We found that
Ueff = 0.4 eV leads to accurate prediction of the CeMg ground
state (AFM100) and leads to an estimated Néel temperature
that is very close to the 20 K value from experiment. The
GGA leads to a low energy CeMg structure that is also an
AFM state but with wavevector along [110]: this disagrees
with experiment. Using a least-squares fitting method, we
computed the Ci j of each of five CeMg structures. For each
structure, C44 ≈ C11 for small Ueff values, e.g. <1 eV (or
C44 > C11 mainly from the GGA), which suggests an elastic
anomaly associated with the transverse sound speeds equaling
(or exceeding) the longitudinal sound speed. This behavior was
supported with computed phonon dispersion relations based
upon the direct method for lattice dynamics, especially in the
GGA. The predicted frequencies of the longitudinal acoustic
branch along the �–X direction are lower than those of the
transverse branches. The origin of this behavior is associated
with negative stretching force constants for the second-nearest-
neighbor Mg–Mg ion interaction and especially the third-
nearest-neighbor Ce–Ce ion interaction. Polycrystalline values
of Poisson’s ratio based upon the Hill criterion range between
0.19 and 0.28. However, for all CeMg structures, we find
negative Poisson’s ratio values (from −0.30 to −0.74) due to
an elongation along [110] measured in [11̄0].
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